Beyond Turing: mechanochemical pattern formation in biological tissues

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Turing Pattern Formation without Diffusion

The reaction-diffusion mechanism, presented by AM Turing more than 60 years ago, is currently the most popular theoretical model explaining the biological pattern formation including the skin pattern. This theory suggested an unexpected possibility that the skin pattern is a kind of stationary wave (Turing pattern or reaction-diffusion pattern) made by the combination of reaction and diffusion....

متن کامل

Pattern formation in generalized Turing systems

Turing's model of pattern formation has been extensively studied analytically and numerically, and there is recent experimental evidence that it may apply in certain chemical systems. The model is based on the assumption that all reacting species obey the same type of boundary condition pointwise on the boundary. We call these scalar boundary conditions. Here we study mixed or nonscalar boundar...

متن کامل

Pattern Formation in Quantum Turing Machines

We investigate the iteration of a sequence of local and pair unitary transformations, which can be interpreted to result from a Turing-head (pseudo-spin S) rotating along a closed Turing-tape (M additional pseudo-spins). The dynamical evolution of the Bloch-vector of S, which can be decomposed into 2M primitive pure state Turing-head trajectories, gives rise to fascinating geometrical patterns ...

متن کامل

Pattern Formation (ii): the Turing Instability

1. Growing modes in a reaction-diffusion system In this section we summarize the classical linear Turing instability criterion for a reaction-diffusion system. Consider a reaction-diffusion system of 2-species as ∂U ∂t = ∇ · (D1 (U,V )∇U) + f (U,V ) , (1.1) ∂V ∂t = ∇ · (D2 (U,V )∇V ) + g (U,V ) , where U (x,t) ,V (x,t) are concentration for species, D1, D2 diffusion coefficients, f, g reaction ...

متن کامل

Stability of n-dimensional patterns in a generalized Turing system: implications for biological pattern formation

The stability of Turing patterns in an n-dimensional cube (0, π) is studied, where n 2. It is shown by using a generalization of a classical result of Ermentrout concerning spots and stripes in two dimensions that under appropriate assumptions only sheet-like or nodule-like structures can be stable in an n-dimensional cube. Other patterns can also be stable in regions comprising products of low...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biology Direct

سال: 2016

ISSN: 1745-6150

DOI: 10.1186/s13062-016-0124-7